Performance of a spatio-temporal error model for raster datasets under complex error patterns
نویسندگان
چکیده
The CLC (Combined Location Classification) error model provides indices for overall data uncertainty in thematic spatio-temporal datasets. It accounts for the two major sources of error in such datasets, location error and classification error. The model assumes independence between error components, while recent studies revealed various degrees of correlation between error components in actual datasets. The goal of this study is to determine if the likely violation of model assumptions biases model predictions. A comprehensive algorithm was devised to simulate the entire process of error formation and propagation. Time series thematic maps were constructed, and modified maps were derived as realizations of underlying error patterns. Error rate and pattern (positive autocorrelation) were controlled for location error and for classification error. The magnitude of correlation between errors from different sources and correlation between error at different time steps was also controlled. A very good agreement between model predictions and simulation results was found in the absence of correlation in error between time steps and between error types, while the inclusion of such correlations was shown to affect model fit slightly. Given our current knowledge of spatio-temporal error patterns in real data, the CLC error model can be used reliably to assess the overall uncertainty in thematic change detection analyses.
منابع مشابه
Assessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-Temporal Analysis of Drought Severity Using Drought Indices and Deterministic and Geostatistical Methods (Case Study: Zayandehroud River Basin)
Drought monitoring is a fundamental component of drought risk management. It is normally performed using various drought indices that are effectively continuous functions of rainfall and other hydrometeorological variables. In many instances, drought indices are used for monitoring purposes. Geostatistical methods allow the interpolation of spatially referenced data and the prediction of v...
متن کامل